A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation
نویسندگان
چکیده
The nonlinear Poisson-Boltzmann equation (PBE) has been successfully used for the prediction of numerous electrostatic properties of highly charged biopolyelectrolytes immersed in aqueous salt solutions. While numerous numerical solvers for the 3D PBE have been developed, the formulation of the outer boundary treatments used in these methods has only been loosely addressed, especially in the nonlinear case. The de facto standard in current nonlinear PBE implementations is to either set the potential at the outer boundaries to zero or estimate it using the (linear) Debye-Hückel (DH) approximation. However, an assessment of how these outer boundary treatments affect the overall solution accuracy does not appear to have been previously made. As will be demonstrated here, both approximations can, under certain conditions, produce completely erroneous estimates of the potential and energy salt dependencies. A related concern for calculations carried out on grids of finite extent (e.g., all current finite difference and finite element implementations) is the contribution to the energy and salt dependence from the exterior region outside the computational grid. This too is shown to be significant, especially at low salt concentration where essentially all of the contributions to the excess osmotic pressure and ion stress energies originate from this exterior region. In this paper the authors introduce a new outer boundary treatment that is valid for both the linear and nonlinear PBE. The authors also formulate energy corrections to account for contributions from outside the computational domain. Finally, the authors also consider the effects of general ion exclusion layers upon biomolecular electrostatics. It is shown that while these layers tend to increase the surface electrostatic potential, under physiological salt conditions and high net charges their effect on the excess osmotic pressure term, which is a measure of the salt dependence of the total electrostatic free energy, is weak. To facilitate presentation and allow very fine resolutions and/or large computational domains to be considered, attention is restricted to the 1D spherically symmetric nonlinear PBE. Though geometrically limited, the modeling principles nevertheless extend to general PBE solvers as discussed in the Appendix. The 1D model can also be used to benchmark and validate the salt effect prediction capabilities of existing PBE solvers.
منابع مشابه
Extensions to Study Electrochemical Interfaces - A Contribution to the Theory of Ions
In the present study an alternative model allows the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly. From the Electro-Quasistatic approach (EQS) done in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles in arbitrary solutions acting as electrolytes. Thi...
متن کاملElectrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملA boundary integral Poisson-Boltzmann solvers package for solvated bimolecular simulations
Abstract: Numerically solving the Poisson-Boltzmann equation is a challenging task due to the existence of the dielectric interface, singular partial charges representing the biomolecule, discontinuity of the electrostatic field, infinite simulation domains, etc. Boundary integral formulation of the Poisson-Boltzmann equation can circumvent these numerical challenges and meanwhile conveniently ...
متن کاملHybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation
A hybrid approach for solving the nonlinear Poisson-Boltzmann equation (PBE) is presented. Under this approach, the electrostatic potential is separated into (1) a linear component satisfying the linear PBE and solved using a fast boundary element method and (2) a correction term accounting for nonlinear effects and optionally, the presence of an ion-exclusion layer. Because the correction pote...
متن کاملEfficient and Accurate Higher-order Fast Multipole Boundary Element Method for Poisson Boltzmann Electrostatics
The Poisson-Boltzmann equation is a partial differential equation that describes the electrostatic behavior of molecules in ionic solutions. Significant efforts have been devoted to accurate and efficient computation for solving this equation. In this paper, we developed a boundary element framework based on the linear time fast multipole method for solving the linearized PoissonBoltzmann equat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational chemistry
دوره 28 5 شماره
صفحات -
تاریخ انتشار 2007